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This paper examines the phonon-induced electron decoherence in semiconductor nanostructures and nan-
odevices within the Wigner transport equation, solved using a particle Monte Carlo technique. The Wigner-
Boltzmann formalism is first established as a relevant and original approach to modeling electron quantum
decoherence in semiconductors. The simulation of the time evolution of a free wave-packet then allows
analyzing the competition between decoherence and wave-packet expansion in a semiconductor. It is addition-
ally argued that decoherence occurs faster than in the widely studied case of quantum Brownian motion. The
simulation of a wave packet interacting with a tunnel barrier allows studying the electron localization induced
by decoherence. The case of a wave packet interacting with a double barrier puts forward the mechanism of
decoherence-induced transition from resonant to sequential transport through a bound state. Finally the simu-
lation of resonant tunneling devices shows how these phenomena take place in nanodevices and highlights the
transition from the quantum transport regime to the semiclassical transport regime induced by phonon

scattering.
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I. INTRODUCTION

The physics of transport in solid-state electron devices has
been deeply and successfully investigated in the frame of
the semiclassical approximations which consider electrons
as localized particles experiencing recurrent scattering events
by interaction with phonons or impurities. However, in
modern nanodevices, the active region becomes typically
smaller than the electron wavelength and mean-free path
even at room temperature. The wavelike nature of electrons
is thus to be considered within quantum transport models.
All sources of decoherence effects deserve careful analysis
to establish the connection between the ideal quantum sys-
tem and the semiclassical world which are not of course
strictly separated. Beyond the analysis of nanodevice opera-
tion, the study of decoherence is crucial to assess the pos-
sible realization of quantum information processing solid-
state devices.

Different works have been performed on decoherence in
solid-state nanodevices. Decoherence in the transport
through quantum dots has been widely discussed, in particu-
lar within the concept of pointer states.! Knezevic? recently
investigated the decoherence induced by contact coupling
in ballistic structures. The time evolution of the entangle-
ment between two electrons was analyzed by solving the
time-dependent Schrodinger equation (Ref. 3 and references
therein). Our work focuses here on the phonon-induced
decoherence which is expected to be very important in
electron devices operating at room temperature. Decoherence
is here understood as the decay of spatial coherences of
the wave packet, captured by the off-diagonal elements of
the density matrix in the spatial coordinate representation.
In recent works, the electron decoherence induced by
electron-phonon interaction has for example been considered
in a molecular conductor in the language of Landauer’s
approach of transport by means of Green’s function
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calculation.* This decoherence effect on an electron has been
investigated in a bulk semiconductor by evaluating the time
evolution of the generalized Wigner’s function of the
electron-phonon system® for a single electron or phonon-
scattering event.

This paper investigates decoherence induced by the
coupling to the full phonon bath in an electron device
operating at room temperature. We discuss the competition
between coherence and decoherence for different typical
transport situations in semiconductor structures and de-
vices where electrons interact with phonons. The Wigner
transport formalism is used to take advantage of its
strong analogy with the semiclassical Boltzmann’s approach
and to show how the phonon-induced decoherence and
localization® of electrons can explain the emergence of
semiclassical transport in a nanodevice. Another major
advantage is that the Wigner’s formalism offers a straight-
forward access to the nondiagonal terms of the density ma-
trix which provides a visualization of decoherence phenom-
ena.

The paper is organized as follows. We first introduce the
Wigner-Boltzmann equation as an original approach to
model decoherence and the Monte Carlo technique used to
solve it. The case of a free wave-packet then allows us to
study the competition between decoherence and wave-packet
expansion in semiconductors to compare this decoherence
situation with the widely studied quantum Brownian motion
case. We then analyze the cases of the interaction of a wave-
packet with a single and a double tunnel barrier. Finally the
simulation of resonant tunneling devices shows how these
phenomena take place in realistic nanodevices and the tran-
sition between the quantum transport regime and the semi-
classical transport regime. The coupling of Boltzmann and
Wigner Monte Carlo simulations allows us to examine the
quantum to semiclassical transition resulting from phonon
scattering.
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II. DERIVATION OF THE WIGNER-BOLTZMANN
EQUATION FROM THE DECOHERENCE POINT OF VIEW

A. Wigner-Boltzmann equation

In recent works, quantum transport in electron devices in
the presence of phonon scattering has been essentially stud-
ied by using different formalisms: the density matrix, the
nonequilibrium Green’s functions (NEGFs), and the Wigner
function (WF).

The density matrix in the reciprocal space representation
allows a very precise treatment of the electron-phonon cou-
pling Hamiltonian, including collisional broadening and re-
tardation and intracollisional field effect,”® but does not al-
low the study of space-dependent phenomena. Nanodevice
simulation is however possible with the density matrix using
Pauli master’s equation.'®!" The density matrix is then ex-
pressed in a set of wave functions providing a basis of the
system, and electron-phonon coupling is modeled at the
Fermi golden rule level. The modeling of the contacts'®!?
and of the transient regime'®!3 raises difficult issues in this
model and it is believed to be limited to devices smaller than
the electron dephasing length.'!

In the NEGF formalism, the most simple approach to in-
cluding phonon scattering is the phenomenological Biittiker
probe technique,'* which is widely used for nanodevice
simulation.!>~!7 The Biittiker probe formalism may be de-
rived from actual scattering Hamiltonians,*'8 but it cannot
model the detailed momentum and energy exchanges when
several phonon modes are involved in scattering processes.
More advanced formulations of electron or phonon scattering
are possible within the Green’s function formalism using
perturbation theory'® and are progressively introduced into
nanodevice simulation.?*?!

Another possibility to model quantum transport with scat-
tering is the Wigner formalism.?> The Wigner function is
defined as a differential Fourier transform of the density ma-
trix of the electrons.?® It has been commonly used for deco-
herence studies in atomic physics,>*? as well as for device
modeling.?°=* In the frame of semiconductor device analysis
it offers two major advantages over the density matrix and
NEGEFE. First, in a semiclassical situation the WE, defined in
the phase space, is equivalent to the distribution function
described by the Boltzmann formalism (which is nothing but
the classical limit of the Wigner quantum theory).?’ Second,
it is naturally a time-dependent formulation, which makes it
very convenient to study the dynamics of decoherence, all
the more because it gives easy access to the electron-density
matrix in the spatial coordinate representation by inverse
Fourier transform of the WE.

This paper intends to describe how interaction of the elec-
trons with the phonon bath leads to decoherence in nanode-
vices. We first establish the Wigner-Boltzmann equation as a
relevant technique to study decoherence. We consider an
electron coupled to a phonon mode q of energy E,=%w, and
occupation number n. Using the conventional phase-space
coordinates (r,k), the generalized Wigner function of the
system including the electron and the phonon mode obeys
the Wigner transport equation which reads, as demonstrated
in Ref. 23,
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where the effect of the potential V is included in the quantum
evolution term
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and the effect of electron or phonon coupling is described by
the collision term

Cf,(r.k,n,n' 1) = F(q){eiqr{\"n + lfw<r,k - g,n + l,n',t)
- \"7fw(r,k+ gnn - 1,z>}
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(with the notations of Ref. 23).

If the coupling to the phonon mode is assumed to be
weak, scattering phenomena involving several phonons are
negligible and only consecutive phonon numbers are coupled
through the generalized Wigner function. One can thus as-
sume f,(r.k,n,n’,1)=0 if [n—n'|>1. If phonon-scattering
phenomena are assumed to be more rapid than other phe-
nomena at play (namely, the time-dependence of the Wigner
function and the transport of carriers along the device), one
can show, after a derivation inspired by that of Ref. 35 and
detailed in the Appendix A,

(a ik 9
g K
Jt  m or

- Q)fw(r’k’n’nat)

= 2mhFA(Q{Ey— E(K) + E(k - q)](n + 1)
X[f(r.k—q,n+ 1,n+1,1) - f,,(r.k,n,n,0)]
+ JEy+EK)—-E(k+q)]n
X[f, (v, k+q,n—=1,n—-1,1) - f,(r.K,n,n,1)]}. (4)

This is a strong approximation that neglects advanced effects
of electron or phonon coupling as collisional broadening and
retardation or intracollisional field effects. It becomes wrong
for devices operating at very high frequency.?

If we now consider the phonon mode to be itself coupled
to an efficient thermostat so that the phonon mode remains in
equilibrium every time we may consider that the generalized
Wigner function factorizes as in Refs. 23 and 35
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where we have introduced the average phonon number 7
=[exp(fhwy/kT)—1]"" and the reduced Wigner function of
the electron system f,,(r,Kk,1).

The transport equation of the reduced Wigner function is
then obtained by tracing Eq. (4) over the phonon numbers

ot moar
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In the presence of many phonon modes q, it is straightfor-
ward to show that Eq. (6) may be generalized, leading to the
equation known as the Wigner-Boltzmann equation?’

d hkd
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Jt  m or
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q
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X[(@+Df,(rk+q.0)-af,(r k0] (7)

In this approach the quantum dynamics of the electrons is
thus accurately modeled. The main approximation is in the
treatment of scattering phenomena. They are assumed to be
fast and are finally modeled in the transport equation using
the same term as in semiclassical transport.

B. Comparison with the quantum Brownian motion

We can now remark that this derivation strictly follows
the general approach to quantum decoherence: it considers a
supersystem including the system of interest (the electron)
and its environment (the phonon mode in this case) with
which the electron interacts. The master equation of the den-
sity matrix or the Wigner function of the system of interest is
obtained by tracing the density matrix over the environment.
To highlight the connection with the theory of quantum de-
coherence and to anticipate further remarks, it is insightful to
look for a connection with the quantum Brownian motion,
which is a simple and widely studied decoherence
situation.3® To this aim, we consider a simplified case where
a one-dimensional (1D) electron interacts with numerous 1D
phonon modes (as in a nanowire or a carbon nanotube)
whose wave vectors g are much smaller than the typical
values of electron wave vector k. The energy of the phonon
modes is also assumed much smaller than the thermal energy
kT so that 7+ 1=n. In this case Eq. (6) simplifies to
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The last term is reminiscent of the Fokker-Planck equation
and is a form of the well-known equation of quantum
Brownian motion.*® In the most simple case, where the quan-
tity A=Eq2th2(q)q2r7(q)5[hwo(q)—ﬁZ%] may be consid-
ered as k independent, it is well known that the Fokker-
Planck equation leads to the exponential suppression of the
nondiagonal terms of the electron-density matrix as
p(r,r';t)=p(r,r' ;O)e‘A("”)z’ and thus leads to an efficient
spatial localization of the electrons.3® This illustrates how
phonon scattering may lead to localization, similarly to the
case of particles subject to quantum Brownian motion. How-
ever, if Eq. (9) is insightful to understand how phonons can
induce decoherence in electron devices it is probably insuf-
ficient to model decoherence accurately, as shown later on,
since in semiconductor devices operating at room tempera-
ture the phonon wave vectors cannot be considered smaller
than that of electrons and the phonon energies are compa-
rable to the thermal energy k7. In contrast, directly solving
the Wigner-Boltzmann Eq. (6) should provide a detailed de-
scription of phonon-induced decoherence in devices. In Sec.
III we will compare the coherence length determined by
these two approaches in gallium arsenide (GaAs) at room
temperature.

C. Solution of the Wigner-Boltzmann equation

Different techniques to solving the Wigner-Boltzmann Eq.
(6) have been developed. The direct solution may be
obtained,?®3%37-4! but its practical implementation is limited
by some issues regarding the discretization of the derivative
term*? due to the highly oscillatory nature of the WF. The
strong similarity with Boltzmann’s equation suggests using
statistical particle techniques in solving the Wigner transport
equation as successfully and widely developed in the semi-
classical case. The Monte Carlo treatment of both Q and C
terms has been theorized and reported.”® The corresponding
algorithm suffers from the problem of exponential growth of
the integer weight of particles, which can be successfully
overcome by using a multiplication and recombination
technique.?>*3 Another Wigner Monte Carlo technique con-
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sists in treating statistically only the collision term. The
quantum evolution term is considered through its effect on a
new real parameter associated with each particle, the affinity,
which contains the full wave properties of the electron sys-
tem. Initially proposed by Shifren et al.,”’ it has been im-
proved by the authors for the fully self-consistent simulation
of resonant tunneling diodes and nanoscaled metal-oxide-
semiconductor field effect transistors.’*32 It is here em-
ployed to study electron decoherence in some structures and
devices.

III. APPLICATION OF THE WIGNER-BOLTZMANN
EQUATION TO THE EVOLUTION OF A FREE WAVE
PACKET

To understand the mechanisms of decoherence we first
simulate the evolution of an initially pure Gaussian state
¢(x)=Ne‘[(x‘x0)2/2"2]eik0", which corresponds to an initial
Wigner function fw(x,k)=N’e‘[(x‘Xo)z/"z]e‘(k‘ko)z"z, through
the Wigner transport equation (N and N’ are normalization
constants). The initial transverse momentum of particles is
randomly selected according to a thermal law. The semicon-
ductor material is bulk three-dimensional gallium arsenide
(GaAs) and the temperature is 300 K. The band-structure
description is limited to the I' valley and the scattering
mechanisms considered are interactions with elastic acoustic
phonons and inelastic polar optical phonons through standard
parameters.*

The time-dependent electron Wigner function can be ob-
tained directly from the Monte Carlo simulation.3*3! The re-
duced density matrix p(x,x’) of electrons can be computed
from the Wigner functions by inverse differential Fourier
transform of the Wigner function as

. +x’
plx,x') = f dke™ 0 )fw(x zx ,k). (10)

Computing the density matrix is insightful since its nondi-
agonal elements make obvious which positions of the real
space are coherently connected.

Figures 1(a) and 1(b) show the cartography of the Wigner
function and the modulus of the density matrix (DM), re-
spectively, associated with the initial state defined by ky,=4
X 108 m™!, ¢=10 nm. Figures 1(c) and 1(e) display the
Wigner function of the wave packet after 130 fs of ballistic
(no phonon) and diffusive (with phonons) propagation, re-
spectively. Phonon scattering tends to widespread the WF
over smaller k and displacement values [Fig. 1(e)] than in the
purely coherent case [Fig. 1(c)]. The density matrix is plotted
in the same situations in Figs. 1(d) and 1(f). In the ballistic
case [Fig. 1(d)] all diagonal and nondiagonal elements grow
from the initial state according to the natural coherent exten-
sion of the wave packet. When including scattering [Fig.
1(f)], the diagonal terms still grow similarly but they extend
over a larger range, as indicated by the distribution tail at
small x values. However, the nondiagonal elements do not
extend as in the coherent case. They actually reduce as func-
tion of time.

To better quantify this behavior and the decoherence ef-
fect, we now consider two parameters: the purity of the den-
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FIG. 1. (Color online) Evolution of a free wave packet coupled
or uncoupled with a phonon bath at room temperature in GaAs. (a)
Wigner function and (b) modulus of the density matrix of the initial
pure state. Simulated WF and DM after 130 fs without (c) and (d)
or with (e) and (f) coupling to the phonon bath. DM elements are
expressed in nm™!.
sity matrix and the coherence length of the wave packet.

The purity of the density matrix P=Tr p? which is equiva-
lent to P=2m[dx[ dkffv(x,k) (as defined in Ref. 45) is plotted
in the inset of Fig. 2 as a function of time for different values
of 0. A rapid decrease from the initial value of 1 (which
characterizes a pure state) is observed at short times, almost
independently of o7 the originally pure state rapidly evolves
to a mixed state. At longer times the purity slowly converges
to zero.

We plot in Fig. 2 (straight lines) the coherence length
associated with the density matrix, which represents the typi-
cal length on which the construction of interferences is pos-

sible. It is estimated according to the traditional definition in

Lcoh. Lcoh
plet =5

quantum  decoherence
=¢ 8p(x,x), as in Ref. 36.
The coherence length evolution is shown for wave pack-
ets with initial expansion o of 5, 10, and 30 nm and initial
zero average wave vector ky. The theoretical coherence
length at thermal equilibrium L. =#/\v4mkT is also shown
on a horizontal dashed line for comparison. _
Initially, the coherence length is equal to o/\2. For a
purely coherent situation, the coherence length should in-
crease linearly with time. By contrast, in the presence of
phonon coupling, it is observed that after about 100 fs, the
coherence lengths for the three values of o converge to a

theory by
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FIG. 2. (Color online) Coherence length of free wave packets
that propagate with coupling to a phonon bath extracted from WMC
simulation (straight lines) and corresponding quantum Brownian
motion model (dotted lines) for different o values. Horizontal line:
theoretical thermal equilibrium coherence length. Inset: purity ex-
tracted from WMC simulation.

similar law, in which the coherence length decreases slowly.
At short time, the cases with o of 5 and 10 nm exhibit a
maximum in the coherence length: the coherent wave-packet
expansion is briefly stronger than decoherence.

These results are very reminiscent of the evolution of the
free wave packet in quantum Brownian motion (QBM)
theory, as reported for instance in Ref. 36. To highlight the
comparison, the damping parameter A of a QBM model
equivalent to Eq. (9) is fitted to give a long-time behavior
similar to that resulting from Wigner Monte Carlo simula-
tion. A value of A=3.2X10?® m~2 s~ is found. It is remark-
able that this value is consistent with the GaAs energy relax-
ation time y!. QBM theory indeed predicts
y=A#%%/(mkT),* which gives y'=0.75 ps, to be compared
with y'~0.8 ps in Ref. 46.

The coherence length evolution in QBM is superimposed
to the Wigner Monte Carlo (WMC) extracted curves (dotted
lines of Fig. 2). QBM model and WMC simulation indeed
lead to similar behavior, but for small values of o it is ob-
served that the peak of coherence length is less pronounced
with WMC simulation than with QBM model. This suggests
that decoherence is faster for electrons in GaAs than for elec-
trons subject to the QBM. This can be attributed to the exis-
tence of high-momentum (short-wavelength) phonons that
localize electrons very efficiently in GaAs, whereas in QBM
electrons are assumed to be scattered only by small momen-
tum particles or fields.3¢ Overall, this demonstrates that for a
free propagation, scattering-induced decoherence rapidly
dominates over the coherent expansion of the wave packet.

IV. INTERACTION OF A WAVE PACKET WITH SINGLE
AND DOUBLE BARRIERS

We now consider a tunnel barrier because such a situation
is able to build spatial quantum coherence: if a wave-packet
is sent ballistically onto the barrier, the resulting reflected
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FIG. 3. (Color online) WF and modulus of the DM of a wave
packet after interaction with a single barrier without (a) and (b) and
with (c) and (d) coupling to a phonon bath. DM elements are ex-
pressed in nm~', the barrier is located at the position x,=75 nm,
and its width is 2 nm.

and transmitted wave packets are fully coherent with each
other. This is well observed in Figs. 3(a) and 3(b) which
show WF and DM in a situation where a Gaussian wave
packet with ky=4 X 108 m~!, =10 nm, and an initial cen-
tral position xy=30 nm has interacted with a tunnel barrier
(the WF and DM are plotted after 130 fs). The barrier is
located at the position x.=75 nm (that is the center of the x
axis), its width is 2 nm, and its energy height 0.3 eV.

Electrons on left and right sides of the barrier are fully
coherent, so high nondiagonal values appear in the density
matrix. This coherence manifests on the WF by strong posi-
tive and negative oscillations around k=0. In the presence of
phonons [Figs. 3(c) and 3(d)], the coherence between left
and right sides of the barrier appears strongly damped. The
electrons are separately localized and if interferences be-
tween electrons on the left and right sides could be con-
structed, they would have low contrast.

To quantify the localization of electrons on one or the
other side of the barrier due to decoherence it is insightful to
introduce an evaluation of the coherence between the left (L)
and the right (R) sides of the barrier by

fdxf dx'|p(x,x")|
B L Jr

f dxpl/z(x,x)f dxp"?(x,x)
L R

C (11)

This parameter compares the nondiagonal elements connect-
ing the left and right sides of the barrier with the diagonal
elements of the left and right sides and is equal to one for a
purely coherent situation. It is plotted as a function of time in
Fig. 4 for two k, values. It appears that coherence decreases
rapidly: an electron that tunnels through a barrier can rapidly
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FIG. 4. (Color online) Coherence C [defined in Eq. (11)] be-
tween the two sides of the single barrier as a function of time after
interaction of a wave packet with a single barrier, for two initial
average wave vectors k. Inset: purity as a function of time in the
same situations.

be considered as being on one side of the barrier, but not in
a coherent state between the two states. In other words, the
coherence between transmitted and reflected electrons is rap-
idly lost. The inset of Fig. 4 also shows the purity as a func-
tion of time: this parameter decreases rapidly with a rate
depending on k.

We now examine the double-barrier case from the deco-
herence viewpoint. Double barriers are essential structures in
nanoelectronics because they are present in many nanode-
vices (e.g., resonant tunneling diodes and transport through
quantum dots or molecules) and have a strong conceptual
significance. We consider a double barrier located centered
around the position x,=75 nm. Both barriers have a 1.5 nm
width and a 0.3 eV energy height, and they are 5 nm apart.
The same wave packet as for the single-barrier case is sent
onto the double barrier and the DM is plotted after 130 fs.
Figure 5(a) shows the DM in a situation with no decoher-
ence. A part of the wave packet is trapped in the quasibound
state of the double barrier, while another part is reflected.
The trapped part slowly leaks to the right side of the barrier.
Vertical and horizontal lines at the position x,=75 nm show
the coherence between electrons trapped in the double barrier
and electrons on the left or right side of the double barrier.
The high nondiagonal values show the coherence of elec-
trons between left and right sides of the double barrier. The
transport is thus fully coherent: tunneling only occurs
through the quasibound state in a resonant process. It is also
interesting to notice a minimum of the density matrix for x
around 50 nm, which is due to quantum inference.*’

When including phonon scattering [Fig. 5(b)] the process
appears significantly different and the coherence is strongly
reduced between electrons in the quasibound states and elec-
trons on left or right side of the barrier. This is well illus-
trated on Fig. 5(c) where a cut of the density-matrix elements
along the central position of the double barrier x,=75 nm is
plotted, with and without coupling to the phonons bath. The
population at x,. p(x,,x.) is almost independent of the pres-
ence of the phonon bath, whereas the coherences with the
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FIG. 5. (Color online) Modulus of the DM of a wave packet
after interaction with a double barrier without (a) and with (b) cou-
pling to a phonon bath (expressed in nm™"'). The double barrier is
centered around x.=75 nm, barriers have a 1.5 nm width, and are 5
nm apart. (c) Modulus of the DM elements at the central position of
the double barrier |p(x.,x)| (x,=75 nm) for both situations.

left and right sides of the double barrier p(x,,x) are strongly
damped by the presence of the phonon bath. It appears that
many electrons trapped in the quasibound state interact with
phonons before leaving this state and are thus localized be-
fore exiting. Additionally, the coherence between electrons
on left and right sides has almost disappeared. The process of
double-barrier tunneling is thus no longer fully resonant.
Electrons can be seen as entering and leaving the quasibound
state in distinct processes, with the possibility of energy ex-
change with the phonons. This illustrates the well-known
coherent vs sequential tunneling situation, which is very im-
portant for resonant tunneling diode operation.'4+8

V. PHONON-INDUCED DECOHERENCE IN RESONANT
TUNNELING DIODE

We now turn to the simulation of an actual device con-
nected to external circuit by ohmic contacts: the resonant
tunneling diode (RTD). The Wigner Monte Carlo algorithm
coupled to Poisson’s equation is very well adapted to the
simulation of resonant tunneling diodes. In the ballistic case
it gives the same result as the NEGF technique and when
including phonon scattering it gives results consistent with
experiments at 300 and 77 K, as demonstrated in Ref. 30.
The detailed boundary and injection conditions implemented
in the device simulator are described and validated in Refs.
30 and 31. The active structure consists of a 5 nm thick
GaAs quantum well embedded in 3 nm thick AlGaAs barri-
ers and 9.5 nm thick GaAs buffer layers. On both sides 50
nm long access regions are doped to 10'® ¢cm™. In addition
to polar optical and acoustic phonon scattering in the whole
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FIG. 6. (Color online) (a) WF of a RTD operating at peak volt-
age. (b)—(d) Modulus of the DM of a RTD operating at peak voltage
(no scattering, standard phonon-scattering rates, standard rates mul-
tiplied by 5) expressed in nm™".
structure, ionized impurity scattering in these access regions
is also included in the Monte Carlo transport algorithm.

Figure 6(a) shows the WF of the RTD operating at peak
voltage (V=0.3 V). The transport in a large part of access
regions (x<<30 nm and x> 120 nm) is essentially semiclas-
sical and the WF matches very well a distribution function
represented by a displaced Maxwellian function (not shown
explicitly). Inside the quantum well the WF around k=0 is
similar to that of the WF of the first bound state in a square
potential.** In the overall active region of the device, oscil-
lations of the WF reveal the presence of spatial coherence.
This coherence and the phonon-induced decoherence are
highlighted in Figs. 6(b)-6(d) which represent the density
matrix in three different scattering situations. In Fig. 6(b) the
transport is fully ballistic in the active region, which means
that phonon scattering has been artificially switched off. In
Fig. 6(c) standard scattering rates were used as for the WF
plotted in Fig. 6(a). In Fig. 6(d) phonon-scattering rates have
been multiplied by 5.

In the ballistic case [Fig. 6(b)], a strong coherence is ob-
served between electrons in the quantum well and in the
emitter region. Nondiagonal elements are also significant be-
tween electrons in collector and emitter regions, which is an
indication of a coherent transport regime. When including
standard scattering rates, the nondiagonal elements strongly
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FIG. 7. (Color online) Simulated current versus voltage of a
RTD with no scattering, standard scattering, and scattering rates
multiplied by 5 in the active region.

reduce and the coherences almost fully disappear when
phonon-scattering rates are multiplied by 5. In this case
nondiagonal elements of the DM almost entirely vanish,
which indicates that the system is now in the sequential
tunneling regime. This phonon-induced transition between
coherent and sequential tunneling regimes manifests itself
in the current-voltage characteristics of the RTD plotted in
Fig. 7 for the three scattering situations. Phonon scattering
tends to suppress the resonant tunneling peak while the
valley current increases to such a point that the negative
differential conductance effect almost disappears. The device
tends to behave as a simple tunneling resistance for which a
semiclassical-type description could be accurate enough.

All these considerations give a clear view of how elec-
trons are delocalized in the active part of the device and
become more localized again in the access region. This
seems to suggest a transition from “quantum” to “semiclas-
sical” transport from the active region to the access, which
has been suggested and discussed in different works''?8 and
is here observed directly. To illustrate this statement, it is
insightful to couple a semiclassical Boltzmann transport
equation solution in the access regions with a Wigner trans-
port equation solution in the quantum region. This is easily
achieved using our algorithm.3%34° In Fig. 8, the I-V curve
of the resonant tunneling diode simulated only using Wigner
Monte Carlo simulation is plotted, together with /-V curves
obtained using coupled Boltzmann and Wigner simulations,
with different locations of the Boltzmann or Wigner bound-
ary. When the boundary is set to 50 nm from the tunnel
barriers, the I-V curve is superimposed with the full Wigner
simulation, suggesting that at 50 nm from the double barrier,
electrons have acquired a fully semiclassical behavior. How-
ever when the boundary is set to 10 nm, and even more to 5
nm, the /-V curve is strongly affected. This is consistent with
the density matrix of Fig. 6(c) that shows that the delocal-
ization of the electrons extends beyond 10 nm from the
double barrier. Treating the electrons as semiclassical in this
region thus logically leads to unphysical results. This set of
results shows it is possible to separate “quantum” and “semi-
classical” regions in nanoscaled electron devices. It also
highlights that when simulating long access regions includ-
ing the effects of scattering, the particles are in semiclassical
states at the contacts.
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FIG. 8. (Color online) Coupled Wigner and Boltzmann simula-
tion of current versus voltage of a RTD for different positions of the
semiclassical or quantum boundary L (the quantum region extends
to a distance L before and after the barriers).

VI. CONCLUSION

In this paper, the phenomena related to phonon-induced
decoherence in semiconductor nanostructures and devices
were investigated using state-of-the-art quantum simulation
based on a Wigner Monte Carlo algorithm. The Wigner-
Boltzmann transport equation was first established as an ap-
propriate framework for such a study, especially thanks to its
close connection with the semiclassical Boltzmann approach
and to its straightforward relationship with the density matrix
whose diagonal elements provide a clear view of the coher-
ence evolution in the device. By analyzing the behavior of a
free wave packet in GaAs at room temperature it was then
emphasized that decoherence rapidly dominates and sup-
presses the coherent expansion of the wave packet, even
faster than in the commonly studied model of quantum
Brownian motion. In the case of an electron wave packet
interacting with a tunneling barrier it was shown that phonon
scattering strongly localizes electrons on one or the other
side the barrier, which makes the coherence between re-
flected and transmitted waves vanishing. In a double-barrier
structure, compared to ballistic transport, it was clearly
shown how the phonon-induced decoherence may cause the
transition, at least partially, from coherent to sequential tun-
neling. The decoherence effect was then studied in the real-
istic case of the resonant tunneling diode. Starting from the
ballistic limit it was shown that when increasing the phonon-
scattering rates the negative differential conductance behav-
ior is progressively lost, which makes the resonant-device
behavior like that of a simple tunneling resistance. Finally,
taking advantage of the full compatibility between Boltz-
mann and Wigner Monte Carlo transport algorithms, the
transition between semiclassical and quantum regions of the
RTD was investigated. In particular, according to the coher-
ence length, it was shown that for long enough access re-
gions the particles can be actually considered as semiclassi-
cal near contacts. This set of results helps understanding how
phonon-induced decoherence and electron localization occur
in semiconductor nanodevices operating at room temperature
and whether quantum phenomena can take place or not. The
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Wigner formalism used throughout this works appears to be
useful and relevant for the quantitative analysis of electron
decoherence and for the investigation of solid-state devices
operating in mixed quantum/semiclassical regime.
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APPENDIX

For the phonon coordinates diagonal terms of the gener-
alized Wigner function, Eq. (3) gives (cc is the complex con-
jugate of the right-hand side)

(a ik 9

+ - 2 k7 > at
o o Q)fw(l‘, n.n.1)

= F(q){eiqr[\r’n + lfw(r,k - g,n + 1,n,t>

_\/;fw<r,k+g,n,n—l,t>}}+cc. (A1)
The evolution of the phonon coordinates off-diagonal

component f,[r,k—(q/2),n+1,n,t] [appearing in Eq. (A1)]
is given by, under the weak-coupling approximation,

Jd hkao
—+——+iwy—- 0 |f,.(r,k.n+1,n,1)
Jt  m Jr

= F(q){e‘iqr[— Vi + lfw<r,k + g,n,n,t>

+\n+ lfw(r,k— g,n+ 1,n+ l,t)}}. (A2)

We perform the classical variable substitution®

r(t)=r'(t') + ﬁ—k(t )
m

s A3
o, (A3)
so that Eq. (A2) becomes

J .

(—, +iwy— Q)fw(r’,k,n +1,n,1)
ot
—iqr | , q
=F(qe | —Vn+1f,|r (t),k+5,n,n,t
et lfw(r’(t),k—g,n+ Lo+ 1,t>”.
(A4)

Equation (A4) is then directly integrated
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t

fo(r.kn+1,n,t)=ic+ e_i“’OZJ dt' F(q)e'ar' (! +ioo!

0
— L q '
X|=+Vn+ 1fw r (t ),k+5,}’l,l‘

+n+ lfw<r’(t’),k - g,n + 1,;’)]

t

+ e"""otf dt' e of, [r'(1"),k,n
0

+1,n,t']. (A5)

The electron and phonon are assumed initially uncoupled so
that the initial condition (ic) can be assumed to be zero. It is
then straightforward to derive the counterpart of Eq. (A5) for
fu(r,k,n,n—1,1). The integral expressions of f,(r,k,n
+1,n,1) and f,,(r,k,n,n—1,1) can be injected into Eq. (A1):

- Q)fw(r’k7n’t)
t
=F2(q)f dt'eiqr(n + l)e—iwot—iqr'(z’)+iw0t’
0

X{_fw[r,(t,)7k7n7t,] +fw[r,(tl)’k - qvn + l9t,]}
+ dtreiqrne—iwot—iqr"(t’)+iwot’{fw[ru(t/)’k +qun— 1,l’]

— £ [r" (). k,n,t' 1} + ICF + cc, (A6)

where r(f)=r'(t')+h(k—q/2)(t=t')/m and r()=r"(¢)
+h(k+q/2)(r—t")/m and we have introduced the intracolli-
sional field effect term
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ICF = F(q)e's"

t
X |:\"n + le‘i“’o’f dt'ei‘”O”QfW<r'(t’),k—g,n+ l,n,t')
0
— . ! . q
— \,’ne—twotf dl/elwoz wa<l‘”(l"),k + 5”%” _ 1’[/> .

0
(A7)

The exponentials in Eq. (A6) are then factorized and trans-
formed by introducing the energies E(k), E(k—q), and E(k

+q):

d hka

(ol

t .
= F(q) f dt' (n + 1)eqEoERHEG-a))-1)
0

X{=fle' @) knt' 1+ f[x 1 ('), k—q,n+1,¢']}
+ di’ ne Er OB ¢ (1) K 4 qun—1,1]
- £, [r"(#"),k,n,t']} + ICF + cc. (A8)

This equation is still exact in the weak-coupling limit and
includes all finite collision time effects (collision broadening
and retardation, intracollision field effect). If the phonon
scattering is assumed rapid regarding to the transport phe-
nomena, as explained in the body text, we may use the rela-
tion demonstrated in Ref. 51 (p.v. refers to the Cauchy prin-
cipal value)

f dﬂel’w@’-ﬁcp(f)~q>(z)(w5(w)+ip.v.l>. (A9)
0 w

All the principal values cancel each other. The intracolli-
sional field effect term gives a contribution that is propor-
tional to &w,), which vanishes since the phonon has a non-
zero energy. This thus leads directly to Eq. (4).
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